martes, 28 de octubre de 2014

CIRCUITOS ELECTRICOS

El circuito eléctrico elemental.
El circuito eléctrico es el recorrido preestablecido por por el que se desplazan las cargas eléctricas.
Circuito elemental
Las cargas eléctrica que constituyen una corriente eléctrica pasan de un punto que tiene mayor potencial eléctrico a otro que tiene un potencial inferior. Para mantener permanentemente esa diferencia de potencial, llamada también voltaje otensión entre los extremos de un conductor, se necesita un dispositivo llamado generador (pilas, baterías, dinamos, alternadores...) que tome las cargas que llegan a un extremo y las impulse hasta el otro. El flujo de cargas eléctricas por un conductor constituye una corriente eléctrica.
Si quieres ver los componentes de un circuito eléctrico elemental pincha aquí.

Se distinguen dos tipos de corrientes:
Corriente continua: Es aquella corriente en donde los electrones circulan en la misma cantidad y sentido, es decir, que fluye en una misma dirección. Su polaridad es invariable y hace que fluya una corriente de amplitud relativamente constante a través de una carga. A este tipo de corriente se le conoce como corriente continua (cc) o corriente directa (cd), y es generada por una pila o batería.
Este tipo de corriente es muy utilizada en los aparatos electrónicos portátiles que requieren de un voltaje relativamente pequeño. Generalmente estos aparatos no pueden tener cambios de polaridad, ya que puede acarrear daños irreversibles en el equipo.
Corriente alterna: La corriente alterna es aquella que circula durante un tiempo en un sentido y después en sentido opuesto, volviéndose a repetir el mismo proceso en forma constante. Su polaridad se invierte periódicamente, haciendo que la corriente fluya alternativamente en una dirección y luego en la otra. Se conoce en castellano por la abreviación CA y en inglés por la de AC.
Este tipo de corriente es la que nos llega a nuestras casas y sin ella no podríamos utilizar nuestros artefactos eléctricos y no tendríamos iluminación en nuestros hogares. Este tipo de corriente puede ser generada por un alternador o dinamo, la cual convierten energía mecánica en eléctrica.
El mecanismo que lo constituye es un elemento giratorio llamado rotor, accionado por una turbina el cual al girar en el interior de un campo magnético (masa), induce en sus terminales de salida un determinado voltaje. A este tipo de corriente se le conoce como corriente alterna (a).
Pilas y baterías:
 Las pilas y las baterías son un tipo de generadores que se utilizan como fuentes de electricidad.
Las baterías, por medio de una reacción química producen, en su terminal negativo, una gran cantidad de electrones (que tienen carga negativa) y en su terminal positivo se produce una gran ausencia de electrones (lo que causa que este terminal sea de carga positiva).
Ahora si esta batería alimenta un circuito cualquiera, hará que por éste circule una corriente de electrones que saldrán del terminal negativo de la batería, (debido a que éstos se repelen entre si y repelen también a los electrones libres que hay en el conductor de cobre), y se dirijan al terminal positivo donde hay un carencia de electrones, pasando a través del circuito al que está conectado. De esta manera se produce la corriente eléctrica.
Fuerza electromotriz de un generador:
Se denomina fuerza electromotriz (FEM) a la energía proveniente de cualquier fuente, medio o dispositivo que suministre corriente eléctrica. Para ello se necesita la existencia de una diferencia de potencial entre dos puntos o polos (uno negativo y el otro positivo) de dicha fuente, que sea capaz de bombear o impulsar las cargas eléctricas a través de un circuito cerrado.
A. Circuito eléctrico abierto (sin  carga o resistencia). Por tanto, no se establece la circulación de la corriente eléctrica desde la fuente de FEM (la batería en este caso). B. Circuito eléctrico cerrado, con una carga o resistencia acoplada, a través de la cual se establece la circulación de un flujo de corriente eléctrica desde el polo negativo hacia el polo positivo de la fuente de FEM o batería.
Resumiendo, un generador se caracteriza por su fuerza electromotriz, fem, que es la energía que proporciona a la unidad de carga que circula por el conductor.
Fuerza electromotriz = energía/Carga                   fem= E/Q
La unidad de fuerza electromotriz en el SI es el voltio (V): 1 voltio = 1 julio / 1 culombio
Voltímetro:
La ddp y la fem se pueden medir conectando un voltímetro entre dos puntos de un circuito o entre los terminales de un generador. El voltímetro siempre se conecta en paralelo. La escala de un voltímetro viene expresada en voltios.
Para efectuar la medida de la diferencia de potencial el voltímetro ha de colocarse en paralelo, esto es, en derivación sobre los puntos entre los que tratamos de efectuar la medida. Esto nos lleva a que el voltímetro debe poseer una resistencia interna lo más alta posible, a fin de que no produzca un consumo apreciable, lo que daría lugar a una medida errónea de la tensión. Para ello, en el caso de instrumentos basados en los efectos electromagnéticos de la corriente eléctrica, estarán dotados de bobinas de hilo muy fino y con muchas espiras, con lo que con poca intensidad de corriente a través del aparato se consigue la fuerza necesaria para el desplazamiento de la aguja indicadora.

En la actualidad existen dispositivos digitales que realizan la función del voltímetro presentando unas características de aislamiento bastante elevadas empleando complejos circuitos de aislamiento.En la Figura  se puede observar la conexión de un voltímetro (V) entre los puntos de a y b de un circuito, entre los que queremos medir su diferencia de potencial.
En algunos casos, para permitir la medida de tensiones superiores a las que soportarían los devanados y órganos mecánicos del aparato o los circuitos electrónicos en el caso de los digitales, se les dota de una resistencia de elevado valor colocada en serie con el voltímetro, de forma que solo le someta a una fracción de la tensión total.
Conexión de un voltímetro en un circuito
Asociación de pilas:

Asociación De Pilas En Serie 

Las pilas pueden conectarse en serie cualesquiera que sean las fuerzas electromotrices y la máxima corriente que cada una de ellas pueda suministrar. Evidentemente, al conectarlas en serie, las fuerzas electromotrices se suman, así como sus resistencias internas. Se puede notar que la pila equivalente al conjunto de las n pilas resulta con una f.e.m. mayor, pero, con una resistencia interna mayor, lo cual empeora la situación en este punto. Se debe considerar, además, la corriente máxima que puede suministrar cada una de ellas. La asociación serie sólo podrá suministrar la corriente de la pila que menos corriente es capaz suministrar.

pilas en serie

Asociación De Pilas En Paralelo 

Al conectar pilas en paralelo debe tenerse en cuenta que sean todas de la misma f.e.m., ya que, en caso contrario, fluiría corriente de la de más f.e.m. a la de menos, disipándose potencia en forma de calor en las resistencias internas, agotándolas rápidamente. Si todas ellas son del mismo voltaje el conjunto equivale a una sola pila de la misma tensión, pero con menor resistencia interna. Además, la corriente total que puede suministrar el conjunto es la suma de las corrientes de cada una de ellas, por concurrir en un nudo. La asociación en paralelo por tanto, podrá dar más corriente que una sola pila, o, dando la misma corriente, tardará más en descargarse.
pilas en paralelo

LEYES ELECTRICAS




PRINCIPALES LEYES ELÉCTRICAS

Vamos a dar un repaso a las leyes fundamentales de la electricidad.
LA LEY DE OHM
La Ley de Ohm establece que la intensidad que circula por un conductor, circuito o resistencia, es inversamente proporcional a la resistencia (R) y directamente proporcional a la tensión (E).
La ecuación matemática que describe esta relación es:
 I= \frac{V}{R}
Donde, I es la corriente que pasa a través del objeto en amperios, V es la diferencia de potencial de las terminales del objeto en voltios, y R es la resistencia en ohmios (Ω). Específicamente, la ley de Ohm dice que la R en esta relación es constante, independientemente de la corriente.
Bajate este programita para sencillos calculos y pruebas de la ley de Ohm
__________________________________________________________
LA LEY DE COULOMB
La ley de Coulomb dice que la intensidad de la fuerza electroestática entre dos cargas eléctricas es directamente proporcional al producto de las cargas e inversamente proporcional al cuadrado de la distancia que a ellas las separa.
Charles Austin Coulomb en 1785 desarrollo un aparato que el llamo la barra de torsión , construidas con fibras que permitian un facil desplazamiento, en esta colocó esferas con diferentes cargas electricas.
                    
Dichas mediciones permitieron determinar la ecuación de la ley de Coulomb:
 \vec F = \frac{1}{4 \pi \varepsilon}\frac{q_1 \cdot q_2}{d^2} \vec{u}_d = \frac{1}{4 \pi \epsilon} q_1 \cdot q_2 \frac{(\vec{d_2} -\vec{d_1})}{|\vec{d}_2-\vec{d}_1|^3} \,\!
F = es el vector Fuerza que sufren las cargas eléctricas. Puede ser de atracción o de repulsión, dependiendo del signo que aparezca (función de que las cargas sean positivas o negativas).
= son las cargas sometidas al experimento.
Epsilon = permitividad.
ud = vector director que une las cargas q1 y q2.
d = distancia entre las cargas.
LEYES DE KIRCHHOFF
a) Ley de nodos o ley corrientes
En todo nodo, donde la densidad de la carga no varíe en un instante de tiempo, la suma de corrientes entrantes es igual a la suma de corrientes salientes. Ficho de otra forma la suma de corrientes que entran a un nodo es igual a la suma de las corrientes que salen del nodo.
cg3
Suma de corrientes entrantes = Suma de las corrientes salientes
I1 = I2 + I3
Un enunciado alternativo es, en todo nodo la suma algebraica de corrientes debe ser 0.
cg3
Ejemplo: Calcular la corriente desconocida del circuito:
cg3
Suma de corrientes entrantes = Suma de las corrientes salientes
7A = I2 + 4A
7A – 4A = I2
I2 = 3A
LEY DE MALLAS O LEY DE VOLTAJES
En toda malla la suma de todas las caídas de tensión es igual a la suma de todas las subidas de tensión. Ficho de otra forma el voltaje aplicado a un circuito cerrado es igual a la suma de las caídas de voltaje en ese circuito.
cg3
Voltaje aplicado = Suma de caídas de voltaje
V = V1 + V2 + V3
Un enunciado alternativo es, en toda malla la suma algebraica de las diferencias de potencial eléctrico debe ser 0.
cg3

Ejemplo: Calcular el voltaje desconocido del circuito:
cg3
Voltaje aplicado = Suma de caídas de voltaje
24V = 8V + 10V + V3
24V – 8V – 10V = V3
V3 = 6V
LEY DE WATT
La potencia eléctrica suministrada por un receptor es directamente proporcional a la tensión de la alimentación (V) del circuito y a la intensidad de corriente (I) que circule por él.
cg3
Donde:
P= Potencia en watt (W)
V= Tensión en volt (V)
I= Intensidad de corriente en ampere (A)
Watt es la unidad de potencia del Sistema Internacional de Unidades, su símbolo es W. Es el equivalente a 1 julio por segundo (1 J/s).
Expresado en unidades utilizadas en electricidad, el Watt es la potencia producida por una diferencia de potencial de 1 voltio y una corriente eléctrica de 1 amperio (1 VA).
La potencia eléctrica de los aparatos eléctricos se expresa en Watt, si son de poca potencia, pero si son de mediana o gran potencia se expresa en kilovatios (kW).
EJEMPLOS DE APLICACIÓN:
1. ¿Cuál es la potencia consumida por un cautín de soldar por el cual circula una corriente de 0,16A (160mA) y está conectado a la red de 220V.
cg32. ¿Qué corriente circula por una lámpara de 100W, conectada a la red de 220V?
cg3
3. Encuentre el voltaje aplicado a una plancha de 1000W, que consume una corriente de 4,55A
cg3
LEY DE JOULE
Cuando la corriente eléctrica circula por un conductor, encuentra una dificultad que depende de cada material y que es lo que llamamos resistencia eléctrica, esto produce unas pérdidas de tensión y potencia, que a su vez den lugar a un calentamiento del conductor, a este fenómeno se lo conoce como efecto Joule. En definitiva, el efecto Joule provoca una pérdida de energía eléctrica, la cual se transforma en calor, estas pérdidas se valoran mediante la siguiente expresión:
cg3
Donde:
P= Potencia perdida en W
R= Resistencia del conductor en Ω
I= Intensidad de corriente en A
La resistencia que presenta un conductor es:
cg3
Donde:
ρ= Resistividad en ohm por metro (Ωm).
L= Longitud en metros (m).
A= Sección en metros cuadrados (m2).
La sección transversal del conductor es:
cg3
Donde:
d= diámetro del conductor
El conductor típicamente usado es el cobre, cuya resistividad es de 1,710-8 (Ωm).
Finalmente se calcula la energía perdida en calor como sigue:
cg3
Donde:
Q= Energía calórica en calorías
t= tiempo en segundo (s)
Este efecto es aprovechado en aparatos caloríficos, donde estas pérdidas se transforman en energía calorífica, que se expresa por la letra Q, y se mide en calorías.

CORRIENTE ELECTRICA, ALTERNA Y CONTINUA

Se denomina corriente alterna (abreviada CA en español y AC en inglés, de alternating current) a la corriente eléctrica en la que la magnitud y el sentido varían cíclicamente. La forma de oscilación de la corriente alterna más comúnmente utilizada es la de una oscilación senoidal (figura 1), puesto que se consigue una transmisión más eficiente de la energía. Sin embargo, en ciertas aplicaciones se utilizan otras formas de oscilación periódicas, tales como la triangular o la cuadrada.
Utilizada genéricamente, la CA se refiere a la forma en la cual la electricidad llega a los hogares y a las industrias. Sin embargo, las señales de audio y de radio transmitidas por los cables eléctricos, son también ejemplos de corriente alterna. En estos usos, el fin más importante suele ser la transmisión y recuperación de la información codificada (o modulada

Corriente alterna frente a corriente continua


La razón del amplio uso de la corriente alterna viene determinada por su facilidad de transformación, cualidad de la que carece la corriente continua. En el caso de la corriente continua, la elevación de la tensión se logra conectando dínamos en serie, lo que no es muy práctico; al contrario, en corriente alterna se cuenta con un dispositivo: el transformador, que permite elevar la tensión de una forma eficiente.
La energía eléctrica viene dada por el producto de la tensión, la intensidad y el tiempo. Dado que la sección de los conductores de las líneas de transporte de energía eléctrica depende de la intensidad, mediante un transformador se puede elevar la tensión hasta altos valores (alta tensión), disminuyendo en igual proporción la intensidad de corriente. Con esto la misma energía puede ser distribuida a largas distancias con bajas intensidades de corriente y, por tanto, con bajas pérdidas por causa del efecto Joule y otros efectos asociados al paso de corriente, tales como la histéresis o las corrientes de Foucault. Una vez en el punto de consumo o en sus cercanías, el voltaje puede ser de nuevo reducido para su uso industrial o doméstico y comercial de forma cómoda y segura.

Conversión de corriente alterna en continua

Tensión de salida de unrectificador de onda completa.
Filtrado para atenuar el rizado de la tensión rectificada mediante uncondensador, conformando un circuito RC (filtro de condensador).
Muchos aparatos necesitan corriente continua para funcionar, sobre todos los que llevan electrónica (equipos audiovisuales, ordenadores, etc). Para ello se utilizan fuentes de alimentación que rectifican y convierten la tensión a una adecuada.
Este proceso de rectificación, se realiza mediante dispositivos llamados rectificadores, antiguamente basados en el empleo de tubos de vacío y actualmente, de forma casi general incluso en usos de alta potencia, mediante diodos semiconductores o tiristores.

Polaridad

Generalmente los aparatos de corriente continua no suelen incorporar protecciones frente a un eventual cambio de polaridad, lo que puede acarrear daños irreversibles en el aparato. Para evitarlo, y dado que la causa del problema es la colocación inadecuada de las baterías, es común que los aparatos incorporen un diagrama que muestre cómo deben colocarse; así mismo, los contactos se distinguen empleándose convencionalmente un muelle metálico para el polo negativo y una placa para el polo positivo. En los aparatos con baterías recargables, el transformador - rectificador tiene una salida tal que la conexión con el aparato sólo puede hacerse de una manera, impidiendo así la inversión de la polaridad. En la norma sistemática europea el color negro corresponde al negativo y el rojo al positivo.
En los casos de instalaciones de gran envergadura, tipo centrales telefónicas y otros equipos de telecomunicación, donde existe una distribución centralizada de corriente continua para toda la sala de equipos se emplean elementos de conexión y protección adecuados para evitar la conexión errónea de polaridad.


CORRIENTE CONTINUA

   La corriente continua la producen las baterías, las pilas y las dinamos. Entre los extremos de cualquiera de estos generadores se genera una tensión constante que no varia con el tiempo, por ejemplo si la pila es de 12 voltios, todo los receptores que se conecten a la pila estarán siempre a 12 voltios (a no ser que la pila este gastada y tenga menos tensión). Si no tienes claro las magnitudes de tensión e intensidad, te recomendamos que vayas primero al enlace de la parte de abajo sobre las magnitudes eléctricas antes de seguir. Además de estar todos los receptores a la tensión de la pila, al conectar el receptor (una lámpara por ejemplo) la corriente que circula por el circuito es siempre constante (mismo número de electrones) , y no varia de dirección de circulación, siempre va en la misma dirección, es por eso que siempre el polo + y el negativo son siempre los mismos.

  Conclusión, en c.c. (corriente continua o DC) la Tensión siempre es la misma y la Intensidad de corriente también.

   Si tuviéramos que representar las señales eléctricas de la Tensión y la Intensidad en corriente continua en una gráfica quedarían de la siguiente forma:

corriente continua y alterna
corriente continua

CAPACITANCIA

¿Qué es capacitancia?

Se define como la razón entre la magnitud de la carga de cualquiera de los conductores y la magnitud de la diferencia de potencial entre ellos.
La capacitancia siempre es una cantidad positiva y puesto que la diferencia de potencial aumenta a medida que la carga almacenada se incrementa, la proporción Q / V es constante para un capacitor dado. En consecuencia la capacitancia de un dispositivo es una medida de su capacidad para almacenar carga y energía potencial eléctrica.
La capacitancia tiene la unidad del SI coulomb por volt. La unidad de capacitancia del SI es el farad (F), en honor a Michael Faraday.
CAPACITANCIA = 1F = 1 C
1 V
El farad es una unidad de capacitancia muy grande. En la práctica los dispositivos comunes tienen capacitancia que varían de microfarads a picofarads.
La capacitancia de un dispositivo depende entre otras cosas del arreglo geométrico de los conductores.
2.- ¿Qué es un capacitor?

Considere dos conductores que tienen una diferencia de potencial V entre ellos. Supongamos que tienen cargas iguales y opuestas, como en la figura. Una combinación de este tipo se denomina capacitor . La diferencia de potencial V es proporcional a la magnitud de la carga Q del capacitor.(Esta puede probarse por la Ley de coulomb o a través de experimentos.
-Qjg
Un capacitor se compone de dos conductores aislados eléctricamente uno del otro y de sus alrededores. Una vez que el capacitor se carga, los dos conductores tienen cargas iguales pero opuestas.
3.- ¿Cuáles son los tipos de capacitores?

Los capacitores comerciales suelen fabricarse utilizando láminas metálicas intercaladas con delgadas hojas de papel impregnado de parafina o Mylar, los cuales sirvan como material dieléctrico. Estas capas alternadas de hoja metálica y dieléctrico después se enrollan en un cilindro para formar un pequeño paquete. Los capacitores de alto voltaje por lo común constan de varias placas metálicas entrelazadas inmersas en aceite de silicón. Los capacitores pequeños en muchas ocasiones se construyen a partir de materiales cerámicos. Los capacitores variables (comúnmente de 10 a500 pF) suelen estar compuestos de dos conjuntos de placas metálicas entrelazadas, uno fijo y el otro móvil, con aire como el dieléctrico.
Un capacitor electrolítico se usa con frecuencia para almacenar grandes cantidades de carga a voltajes relativamente bajos. Este dispositivo, mostrado en la figura consta de una hoja metálica en contacto con un electrolito, es decir, una solución que conduce electricidad por virtud del movimiento de iones contenidos en la solución. Cuando se aplica un voltaje entre la hoja y el electrolito, una delgada capa de óxido metálico (un aislador) se forma en la hoja y esta capa sirve como el dieléctrico. Pueden obtenerse valores muy grandes de capacitancia debido a que la capa del dieléctrico es muy delgada y por ello la separación de placas es muy pequeña.
Cuando se utilizan capacitores electrolíticos en circuitos , la polaridad (los signos más y menos en el dispositivo) debe instalarse de manera apropiada. Si la polaridad del voltaje es aplicado es opuesta a la que se pretende, la capa de óxido se elimina y el capacitor conduce electricidad en lugar de almacenar carga.
Placas
Lamina electrolito caso
metálica
Contactos
Aceite Línea metálica
Papel +capa de óxido
  • Capacitor de placas paralelas
Dos placas paralelas de igual área A están separadas por una distancia d, como en la figura. Una placa tiene carga Q, la otra carga -Q. La carga por unidad de área sobre cualquier placa es = Q /A. Si las placas están muy cercanas una de la otra (en comparación con su longitud y ancho), podemos ignorar los efectos de borde y suponer que el campo eléctrico es uniforme entre las placas y cero en cualquier otra parte.
El campo eléctrico entre las placas es:
E =  = Q donde o es:
o oA 8.85*10-12
Donde o es la permitividad del espacio libre. La diferencia de potencial entre las placas es igual a Ed; por lo tanto,
V =Ed = Qd
oA
Al sustituir este resultado en la ecuación de capacitancia, encontramos que la capacitancia es igual a,
C = = __Q_____
V Qd / oA
Es decir, la capacitancia de un capacitor de placas paralelas es proporcional al área de sus placas e inversamente proporcional a la separación de estas.
+ Q
- Q
Area = A
d
Un capacitor de placas paralelas se compone de dos placas paralelas cada una de área A, separadas por una distancia d. Cuando se carga el capacitor, las cargas tienen cargas iguales de signo opuesto.
  • Capacitor cilíndrico
Un conductor cilíndrico de radio a y carga Q es coaxial con un cascaron cilíndrico más grande de radio b y carga -Q con una longitud l.
Suponiendo que l es grande comparada con a,b, podemos ignorar los efectos del borde. En este caso, el campo es perpendicular a los ejes de los cilindros y está confinado a la región entre ellos ;como se ve en la figura. Se debe calcular primero la diferencia de potencial entre los dos cilindros, la cual está dada por lo general por
b
Vb - Va = "a E * ds
Donde E es el campo eléctrico en la región a<r<b. Utilizando la ley de Gauss se demostró que el campo eléctrico de un cilindro de carga por unidad de longitud  es E = 2ke / r. El mismo resultado se aplica aquí debido a que el cilindro exterior no contribuye al campo eléctrico dentro de él. Con este resultado y notando que E esta a lo largo de r en la figura encontramos que:
b b
Vb - Va = "a Er dr = -2ke "a dr / r =-2keln(b / a)
Al sustituir esto en la ecuación de capacitancia y utilizando el hecho de que  =Q /l obtenemos:
C = Q = ______Q_______ = ________l_____
2ke ln (b) 2ke ln (b)
l (a) (a)
Donde V es la magnitud de la diferencia de potencial, dada por 2ke ln (b/a), una cantidad positiva. Es decir V =Va -Vb es positiva debido a que el cilindro interior está a un potencial mayor. El resultado nos muestra que la capacitancia es proporcional a la longitud de los cilindros. La capacitancia en este caso depende de los radios de los cilindros conductores.
l
b)
a) Superficie gausiana
a)El capacitor cilíndrico se compone de un conductor cilíndrico de radio a y la longitud l rodeado por un cascaron cilíndrico coaxial de radio b.
b)Vista lateral de un capacitor cilíndrico. La línea punteada representa el final de la superficie gaussiana cilíndrica de radio r y longitud l.
  • Capacitor esférico
Un capacitor esférico consta de un cascarón esférico de radio b y carga -Q concéntrico con una esfera conductora más pequeña de radio a y carga Q.
El campo fuera de una distribución de carga simétrica esfericamente es radial y está dado por ke Q / r2. En este caso, corresponde al campo entre las esferas (a<r<b). (El campo es cero en cualquier otro lado). De la ley de Gauss vemos que sólo la esfera interior contribuye a este campo. De este modo, la diferencia de potencial entre las esferas está dada por
b b b
Vb - Va = - "a Er dr = keQ "a dr /r2 =keQ[1/r]a
Vb - Va = keQ(1 / b -1/ a)
La magnitud de la diferencia de potencial es:
V = Va -Vb = kQ (b - a)
ab
Sustituyendo esto en la ec. de capacitancia, obtenemos
- Q
Un capacitor esférico consta de una esfera interior de radio a rodeada por un casacaron esférico de radio b. El campo eléctrico entre las esfera apunta radialmente hacia fuera si la esfera interior está cargada positivamente.
Combinaciones de capacitores
Es común que dos o más capacitores se combinen de varias maneras . La capacitancia equivalente de ciertas combinaciones puede calcularse utilizando métodos como son la combinación en paralelo o en serie. Los símbolos de circuitos para capacitores y baterías, junto con sus códigos de color, se muestran en la figura. La terminal positiva de la batería esta al potencial más alto y se representa por la línea vertical más larga en el símbolo de la batería.
Símbolo de Símbolo de Símbolo de
Capacitor batería interruptor
- +
se nota que los capacitores están en verde y las baterías y los interruptores en verde.
Combinación en paralelo
La diferencia de potencial que existe es a través de cada capacitor en el circuito paralelo es la misma e igual a l voltaje de la batería.
C1
Q1
C2
Q2
+ -
V
Combinación en serie
Para está combinación en serie de capacitores, la magnitud de la carga debe ser la misma en todas las placas.
V1 C1 V2 C2
+Q -Q +Q -Q
+ -
V
También existen capacitores con dieléctricos (que es un material no conductor como, el caucho, vidrio o papel). Cuando un material dieléctrico se inserta entre las placas de un capacitor aumenta la capacitancia. Si el dieléctrico llena por completo el espacio entre las placas, la capacitancia aumenta en un factor adimensional K, conocido como la constante dieléctrica.
Dieléctrico
Co
+ - Qo
V