lunes, 22 de septiembre de 2014

ECUACIÓN DE ESTADOS GASEOSOS Y GASES IDEALES.

En física y química, una ecuación de estado es una ecuación constitutiva para sistemas hidrostáticos que describe el estado de agregación de la materia como una relación matemática entre la temperatura, la presión, el volumen, la densidad, la energía interna y posiblemente otras funciones de estado asociadas con la materia.
Las ecuaciones de estado son útiles para describir las propiedades de los fluidosmezclassólidos o incluso del interior de las estrellas. Cada substancia o sistema hidrostático tiene una ecuación de estado característica dependiente de los niveles de energía moleculares y sus energías relativas, tal como se deduce de la mecánica estadística.
El uso más importante de una ecuación de estado es para predecir el estado de gases. Una de las ecuaciones de estado más simples para este propósito es la ecuación de estado del gas ideal, que es aproximable al comportamiento de los gases a bajas presiones y temperaturas mayores a la temperatura crítica. Sin embargo, esta ecuación pierde mucha exactitud a altas presiones y bajas temperaturas, y no es capaz de predecir la condensación de gas en líquido. Por ello, existe una serie de ecuaciones de estado más precisas para gases y líquidos. Entre las ecuaciones de estado más empleadas sobresalen las ecuaciones cúbicas de estado. De ellas, las más conocidas y utilizadas son la ecuación de Peng-Robinson (PR) y la ecuación de Redlich-Kwong-Soave (RKS). Hasta ahora no se ha encontrado ninguna ecuación de estado que prediga correctamente el comportamiento de todas las sustancias en todas las condiciones.
Además de predecir el comportamiento de gases y líquidos, también hay ecuaciones de estado que predicen el volumen de los sólidos, incluyendo la transición de los sólidos entre los diferentes estados cristalinos. Hay ecuaciones que modelan el interior de las estrellas, incluyendo las estrellas de neutrones. Un concepto relacionado es la ecuación de estado del fluido perfecto, usada en Cosmología.
Analizando el comportamiento de los gases que se puede observar en los diagramas PνT o Pν, se han propuesto muchos modelos matemáticos distintos que se aproximan a dicho comportamiento. Sin embargo, estos modelos no pueden predecir el comportamiento real de los gases para todo el amplio espectro de presiones y temperaturas, sino que sirven para distintos rangos y distintas sustancias. Es por eso que, según las condiciones con las cuales se esté trabajando, conviene usar uno u otro modelo matemático.
En las siguientes ecuaciones las variables están definidas como aparece a continuación; se puede usar cualquier sistema de unidades aunque se prefieren las unidades delSistema Internacional de Unidades:
P = Presión (atmósferas)
V = Volumen
n = Número de moles
ν = V/n = Volumen molar, el volumen de un mol de gas
T = Temperatura (K)
R = constante de los gases (8,314472 J/mol·K) o (0,0821 atm·L/gmol·K)

Modelo Matemático Ideal - Ley del gas ideal

Artículo principal: Ley de los gases ideales
La ecuación de los gases ideales realiza las siguientes aproximaciones:
1.    Considera que las moléculas del gas son puntuales, es decir que no ocupan volumen.
2.    Considera despreciables a las fuerzas de atracción-repulsión entre las moléculas.
Tomando las aproximaciones anteriores, la ley de los gases ideales puede escribirse
P\upsilon_m = RT\,
ν es el volumen específico, que se define como el volumen total sobre la masa (con unidades en gramos, kilogramos, libras, etc.) o como el volumen total sobre la cantidad de materia (medida en gramos moles, libras moles, etc.). El primero se denomina volumen específico másico y el segundo volumen específico molar. Para la expresión anterior se utiliza el volumen específico molar. Si se quiere expresar en función del volumen total, se tiene lo siguiente:
PV = nRT
Además, puede expresarse de este modo
 P=\rho (\gamma-1) u\,
donde \rho es la densidad, \gamma el índice adiabático y u la energía interna. Esta expresión está en función de magnitudes intensivas y es útil para simular las ecuaciones de Euler dado que expresa la relación entre la energía interna y otras formas de energía (como la cinética), permitiendo así simulaciones que obedecen a la Primera Ley.

Restricciones del modelo ideal

La ecuación de los gases ideales no tiene buena correlación con el comportamiento de los gases reales. Al considerar el volumen molecular y las fuerzas de atracción-repulsión despreciables, no es fiable cuando el volumen es pequeño o la temperatura es baja, ya que los factores que se despreciaron influyen más. Es por eso que se la utiliza a altas temperaturas (la energía cinética de las moléculas es alta comparada con las fuerzas de atracción-repulsión) y bajas presiones (el volumen es muy grande comparado con el volumen de las moléculas del gas). En general el criterio utilizado es que se puede utilizar dicha ecuación cuando la temperatura a la que se está trabajando (o el rango de temperaturas) es superior a dos veces la temperatura crítica del compuesto.
En la gráfica Pν, la zona de temperaturas superior a dos veces la temperatura crítica corresponde a las isotermas que superan a la isoterma crítica. Al estar tan lejos de la campana húmeda del gráfico, las curvas isotérmicas se aproximan a la forma que tienen en el gráfico Pν para los gases ideales. En dicho gráfico, la pendiente de las curvas isotérmicas se puede sacar haciendo la derivada parcial de la presión en función del volumen específico molar, quedando lo siguiente:
P=\frac{RT}{\upsilon} \Rightarrow \frac{dP}{d\upsilon} = -\frac{RT}{\upsilon^2}
LEY DE CHARLES, LEY DE BOYLE Y LEY DE GAY LUSSAC.

Ley de Charles

La Ley de Charles y Gay-Lussac, o simplemente Ley de Charles, es una de las leyes de los gases. Relaciona el volumen y latemperatura de una cierta cantidad de gas ideal, mantenida a una presión constante, mediante una constante de proporcionalidad directa.
En esta ley, Jacques Charles dice que para una cierta cantidad de gas a una presión constante, al aumentar la temperatura, el volumen del gas aumenta y al disminuir la temperatura, el volumen del gas disminuye. Esto se debe a que la temperatura está directamente relacionada con la energía cinética (debido al movimiento) de las moléculas del gas. Así que, para cierta cantidad de gas a una presión dada, a mayor velocidad de las moléculas (temperatura), mayor volumen del gas.
La ley fue publicada primero por Gay Lussac en 1803, pero hacía referencia al trabajo no publicado de Jacques Charles, de alrededor de1787, lo que condujo a que la ley sea usualmente atribuida a Charles. La relación había sido anticipada anteriormente en los trabajos deGuillaume Amontons en 1702.
Por otro lado, Gay-Lussac relacionó la presión y la temperatura como magnitudes directamente proporcionales en la llamada "La segunda ley de Gay-Lussac".
Volumen sobre temperatura: Constante (K -en referencia a si mismo)
   \frac{V}{T} = k_2
o también:
V = k_2T \qquad
donde:
·         V es el volumen.
·         T es la temperatura absoluta (es decir, medida en Kelvin).
·         k2 es la constante de proporcionalidad.
Además puede expresarse como:
   \frac {V_1}{T_1} =
   \frac {V_2}{T_2}
donde:
V_1\,= Volumen inicial
T_1\,= Temperatura inicial
V_2\,= Volumen final
T_2\,= Temperatura final
Despejando T se obtiene:
T_1 =\frac {V_1 \cdot T_2}{V_2}
Despejando T se obtiene:
T_2 =\frac {V_2 \cdot T_1}{V_1}
Despejando V es igual a:
V_1 =\frac {V_2 \cdot T_1}{T_2}
Despejando V se obtiene:
V_2 =\frac {V_1 \cdot T_2}{T_1}

Ley de Boyle-Mariotte

http://upload.wikimedia.org/wikipedia/commons/thumb/1/15/Boyles_Law_animated.gif/300px-Boyles_Law_animated.gif
Animación: masa y temperatura constante.
La Ley de Boyle-Mariotte, o Ley de Boyle, formulada independientemente por el físico y químico irlandés Robert Boyle(1662) y el físico y botánico francés Edme Mariotte (1676), es una de las leyes de los gases que relaciona el volumen y lapresión de una cierta cantidad de gas mantenida a temperatura constante. La ley dice que:
La presión ejercida por una fuerza física es inversamente proporcional al volumen de una masa gaseosa, siempre y cuando su temperatura se mantenga constante.
o en términos más sencillos:
A temperatura constante, el volumen de una masa fija de gas es inversamente proporcional a la presión que este ejerce.
Matemáticamente se puede expresar así:
PV=k\,
donde k\, es constante si la temperatura y la masa del gas permanecen constantes.
Cuando aumenta la presión, el volumen baja, mientras que si la presión disminuye el volumen aumenta. No es necesario conocer el valor exacto de la constante k\, para poder hacer uso de la ley: si consideramos las dos situaciones de la figura, manteniendo constante la cantidad de gas y la temperatura, deberá cumplirse la relación:
P_1V_1=P_2V_2\,
donde:
·         P_1 = Presi\acute{o}n \ inicial \,
·         P_2 = Presi\acute{o}n \ final\,
·         V_1 = Volumen \ inicial\,
·         V_2 = Volumen \ final\,
Además, si se despeja cualquier incógnita se obtiene lo siguiente:
P_1=\frac{P_2V_2}{V_1} \qquad
V_1=\frac{P_2V_2}{P_1} \qquad P_2=\frac{P_1V_1}{V_2} \qquad
V_2=\frac{P_1V_1}{P_2}\,
Ley de Boyle Mariotte.png
Esta ley es una simplificación de la ley de los gases ideales o perfectos particularizada para procesos isotérmicos de una cierta masa de gas constante.
Junto con la ley de Charles, la ley de Gay-Lussac, la ley de Avogadro y la ley de Graham, la ley de Boyle forma las leyes de los gases, que describen la conducta de un gas ideal. Las tres primeras leyes pueden ser generalizadas en la ecuación universal de los gases.

Ley de Gay-Lussac

http://upload.wikimedia.org/wikipedia/commons/thumb/d/db/2%C2%B0legge_Gay_Lussac.jpg/200px-2%C2%B0legge_Gay_Lussac.jpg
Representación gráfica, la pendiente de la recta es la constante.
La ley de Gay-Lussac1 dice:
Establece que la presión de un volumen fijo de un gas, es directamente proporcional a su temperatura.
·         Si el volumen de una cierta cantidad de gas a presión moderada se mantiene constante, el cociente entre presión y temperatura (Kelvin) permanece constante:
   \frac{P}{T} =k_3
o también:
P = k_3T \qquad
donde:
·        P es la presión
·        T es la temperatura absoluta (es decir, medida en Kelvin)
·        k3 la constante de proporcionalidad
Esta ley fue enunciada en 1802 por el físico y químico francés Louis Joseph Gay-Lussac.

Descripción

Para una cierta cantidad de gas, al aumentar la temperatura las moléculas del gas ,se mueven más rápidamente y por lo tanto aumenta el número de choques contra las paredes por unidad de tiempo, es decir, aumenta la presión ya que el recipiente es de paredes fijas y su volumen no puede cambiar. Gay-Lussac descubrió que, en cualquier momento del proceso, el cociente entre la presión y la temperatura absoluta tenía un valor constante.
Supongamos que tenemos un gas que se encuentra a una presión \scriptstyle P_1 y a una temperatura \scriptstyle T_1 al comienzo del experimento. Si variamos la temperatura hasta un nuevo valor \scriptstyle T_2, entonces la presión cambiará a \scriptstyle P_2, y se cumplirá:
   \frac{P_1}{T_1} =
   \frac{P_2}{T_2}
donde:
P_1\,= Presión inicial
T_1\,= Temperatura inicial
P_2\,= Presión final
T_2\,= Temperatura final
Que es otra manera de expresar la ley de Gay-Lussac.
Esta ley, al igual que la ley de Charles, está expresada en función de la temperatura absoluta. Es decir, las temperaturas han de expresarse en Kelvin. y todos los gases se comprimen para poder que el volumen aumente

Validez de la ley

Estrictamente la ley de Gay-Lussac es válida para gases ideales y para gases reales se cumple con un gran grado de acuerdo sólo en condiciones de presión y temperaturas moderadas y bajas densidades del gas, a altas presiones la ley necesita ser corregida con términos específicos según la naturaleza del gas. Por ejemplo para un gas que satisface la ecuación de Van der Waals la ley de Gay-Lussac debería escribirse como:
\frac{P-P_0}{T} = \text{constante}

El término \scriptstyle P_0 es una constante que dependerá de la cantidad de gas en el recipiente y de su densidad, y para densidades relativamente bajas será pequeño frente a \scriptstyle P, pero no para presiones grandes.